Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
Eur J Med Chem ; 271: 116397, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38626522

RESUMO

In this study, a new series of Isoxazole-carboxamide derivatives were synthesized and characterized via HRMS, 1H-, 13CAPT-NMR, and MicroED. The findings revealed that nearly all of the synthesized derivatives exhibited potent inhibitory activities against both COX enzymes, with IC50 values ranging from 4.1 nM to 3.87 µM. Specifically, MYM1 demonstrated the highest efficacy among the compounds tested against the COX-1, displaying an IC50 value of 4.1 nM. The results showed that 5 compounds possess high COX-2 isozyme inhibitory effects with IC50 value in range 0.24-1.30 µM with COX-2 selectivity indexes (2.51-6.13), among these compounds MYM4 has the lowest IC50 value against COX-2, with selectivity index around 4. Intriguingly, this compound displayed significant antiproliferative effects against CaCo-2, Hep3B, and HeLa cancer cell lines, with IC50 values of 10.22, 4.84, and 1.57 µM, respectively, which was nearly comparable to that of doxorubicin. Compound MYM4 showed low cytotoxic activities on normal cell lines LX-2 and Hek293t with IC50 values 20.01 and 216.97 µM respectively, with safer values than doxorubicin. Furthermore, compound MYM4 was able to induce the apoptosis, suppress the colonization of both HeLa and HepG2 cells. Additionally, the induction of Reactive oxygen species (ROS) production could be the mechanism underlying the apoptotic effect and the cytotoxic activity of the compound. In the 3D multicellular tumor spheroid model, results revealed that MYM4 compound hampered the spheroid formation capacity of Hep3B and HeLa cancer cells. Moreover, the molecular docking of MYM4 compound revealed a high affinity for the COX2 enzyme, with energy scores (S) -7.45 kcal/mol, which were comparable to celecoxib (S) -8.40 kcal/mol. Collectively, these findings position MYM4 as a promising pharmacological candidate as COX inhibitor and anticancer agent.


Assuntos
Antineoplásicos , Proliferação de Células , Inibidores de Ciclo-Oxigenase , Ensaios de Seleção de Medicamentos Antitumorais , Isoxazóis , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Isoxazóis/farmacologia , Isoxazóis/química , Isoxazóis/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Esferoides Celulares/efeitos dos fármacos , Modelos Moleculares , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Linhagem Celular Tumoral
2.
Molecules ; 28(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513351

RESUMO

Secure and efficient treatment of diverse pain and inflammatory disorders is continually challenging. Although NSAIDs and other painkillers are well-known and commonly available, they are sometimes insufficient and can cause dangerous adverse effects. As yet reported, derivatives of pyrrolo[3,4-d]pyridazinone are potent COX-2 inhibitors with a COX-2/COX-1 selectivity index better than meloxicam. Considering that N-acylhydrazone (NAH) moiety is a privileged structure occurring in many promising drug candidates, we decided to introduce this pharmacophore into new series of pyrrolo[3,4-d]pyridazinone derivatives. The current paper presents the synthesis and in vitro, spectroscopic, and in silico studies evaluating the biological and physicochemical properties of NAH derivatives of pyrrolo[3,4-d]pyridazinone. Novel compounds 5a-c-7a-c were received with high purity and good yields and did not show cytotoxicity in the MTT assay. Their COX-1, COX-2, and 15-LOX inhibitory activities were estimated using enzymatic tests and molecular docking studies. The title N-acylhydrazones appeared to be promising dual COX/LOX inhibitors. Moreover, spectroscopic and computational methods revealed that new compounds form stable complexes with the most abundant plasma proteins-AAG and HSA, but do not destabilize their secondary structure. Additionally, predicted pharmacokinetic and drug-likeness properties of investigated molecules suggest their potentially good membrane permeability and satisfactory bioavailability.


Assuntos
Inibidores de Ciclo-Oxigenase , Hidrazonas , Inibidores de Lipoxigenase , Piridazinas , Pirróis , Hidrazonas/síntese química , Hidrazonas/química , Hidrazonas/farmacocinética , Hidrazonas/farmacologia , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacocinética , Inibidores de Ciclo-Oxigenase/farmacologia , Piridazinas/síntese química , Piridazinas/química , Piridazinas/farmacocinética , Piridazinas/farmacologia , Pirróis/síntese química , Pirróis/química , Pirróis/farmacocinética , Pirróis/farmacologia , Humanos , Fibroblastos , Simulação por Computador , Permeabilidade da Membrana Celular , Linhagem Celular
3.
Ann Pharm Fr ; 81(5): 801-813, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36931432

RESUMO

BACKGROUND: An array of commercially viable intermediate molecules necessary for the synthesis of a variety of bioactive molecules are chemically synthesized by pyrrolidine and its derivatives, which play a significant role in drug design and development process. AIM: The aim of the present research work was to explore the synthesis of some new pyrrolidine derivatives and to perform their in silico studies and finally evaluation of analgesic and anti-inflammatory activity. OBJECTIVE: The purpose of this study was to synthesis new pyrrolidine derivatives, examine how they affected the COX-1 and COX-2 enzymes computationally, and to screen their in vivo analgesic and anti-inflammatory activity on laboratory animals. METHOD: The new pyrrolidine derivatives were synthesized by condensing N-(3-acetylphenyl)-2-(pyrrolidin-1-yl)acetamide with substituted aniline in ethanol in the presence of catalytic amounts of glacial acetic acid. The structures of novel pyrrolidine derivatives were characterised using IR, NMR, and mass spectroscopy. Several molecular properties of the newly synthesized derivatives were calculated in order to evaluate the nature of the drug-like candidate. A specific reference cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzyme was used to dock the newly synthesized pyrrolidine derivatives. RESULTS: From the observed data, it was noted that amongst all newly synthesized compounds, A-1 and A-4 exhibited the highest anti-inflammatory and analgesic effects, respectively. CONCLUSION: On the basis of findings of present research, it was concluded that A-1 and A-4 might be utilized as a promising new lead compound for Non-Steroidal Anti-Inflammatory Drug (NSAIDs) development.


Assuntos
Analgésicos , Anti-Inflamatórios não Esteroides , Pirrolidinas , Simulação por Computador , Pirrolidinas/síntese química , Pirrolidinas/farmacologia , Pirrolidinas/toxicidade , Analgésicos/síntese química , Analgésicos/farmacologia , Analgésicos/toxicidade , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/toxicidade , Masculino , Feminino , Animais , Ratos , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/toxicidade
4.
Bioorg Med Chem ; 57: 116633, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134642

RESUMO

Establishing structure-activity relationships (SAR) for privileged pharmacophores, such as the indole scaffold, is a key step in the early stages of drug discovery. Herein, we report the synthesis and preliminary SAR studies on substituted 6-hydroxyindole-7-carboxylates as a tunable framework for COX inhibition and anti-cancer activity. To facilitate the SAR discovery, a modular synthetic methodology was employed which enabled the synthesis of the substituted indoles. From the synthesized compounds, five displayed COX-1 inhibition activity in a colorimetric assay with their intracellular activity further confirmed by a cell-based target validation assay. Following molecular docking analyses, key interactions between the active compounds and the COX enzymes were elucidated. In addition to the identified COX inhibitors, two compounds showed selective cytotoxicity against Hep-G2, MCF-7, and LnCaP. The mechanism of cell death was investigated and found to include induction of Caspase-3 activation and cleavage, down-regulation of anti-apoptotic proteins Bcl-xL and Bcl-2, and upregulation of Bax. Finally, two representative compounds were confirmed to induce cell cycle arrest at the G1/G0 stage. In summary, the 6-hydroxyindole-7-carboxylate framework shows promising versatility as a template for the discovery of anti-inflammation or anti-cancer agents, given the evidence of its COX inhibitory and anti-cancer activities herein presented.


Assuntos
Antineoplásicos/farmacologia , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Descoberta de Drogas , Indóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
5.
J Med Chem ; 65(3): 2361-2373, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35084852

RESUMO

When used in combination with azole antifungal drugs, cyclooxygenase (COX) inhibitors such as ibuprofen improve antifungal efficacy. We report the conjugation of a chiral antifungal azole pharmacophore to COX inhibitors and the evaluation of activity of 24 hybrids. Hybrids derived from ibuprofen and flurbiprofen were considerably more potent than fluconazole and comparable to voriconazole against a panel of Candida species. The potencies of hybrids composed of an S-configured azole pharmacophore were higher than those with an R-configured pharmacophore. Tolerance, defined as the ability of a subpopulation of cells to grow in the presence of the drug, to the hybrids was lower than to fluconazole and voriconazole. The hybrids were active against a mutant lacking CYP51, the target of azole drugs, indicating that these agents act via a dual mode of action. This study established that azole-COX inhibitor hybrids are a novel class of potent antifungals with clinical potential.


Assuntos
Antifúngicos/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Fluconazol/farmacologia , Antifúngicos/síntese química , Candida/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Família 51 do Citocromo P450/antagonistas & inibidores , Ergosterol/antagonistas & inibidores , Fluconazol/síntese química , Testes de Sensibilidade Microbiana , Estereoisomerismo
6.
Bioorg Chem ; 119: 105557, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952242

RESUMO

A new set of ibuprofen-quinoline conjugates comprising quinolinyl heterocycle and ibuprofen moieties linked by an alkyl chain were synthesized in good yields utilizing an optimized reaction procedure in a molecular hybridization approach to overcome the drawbacks of the current non-steroidal anti-inflammatory drugs. The synthesized conjugates were screened for their anti-inflammatory, and ulcerogenic properties. Several conjugates were found to have significant anti-inflammatory properties in the carrageenan-induced rat paw edema test without showing any ulcerogenic liability. In addition, most conjugates showed promising peripheral analgesic activity in the acetic acid-induced writhing test as well as central analgesic properties in the in vivo hot plate test. The most promising conjugates were the unsubstituted and 6-substituted fluoro- and chloro-derivatives of 2-(trifluoromethyl)quinoline linked to ibuprofen by a propyl chain. Their anti-inflammatory activity was evaluated against LPS-stimulated inflammatory reactions in RAW264.7 mouse macrophages. In this regard, it was found that most of the conjugates were able to significantly reduce the release and production of nitric oxide in the LPS-stimulated macrophages. The secretion and expression of the pro-inflammatory cytokines IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) were also significantly suppressed.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Desenho de Fármacos , Ibuprofeno/farmacologia , Quinolinas/farmacologia , Ácido Acético , Analgésicos/síntese química , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Ibuprofeno/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Dor/induzido quimicamente , Dor/tratamento farmacológico , Relação Quantitativa Estrutura-Atividade , Quinolinas/química , Células RAW 264.7
7.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770946

RESUMO

Inflammation plays an important role in different chronic diseases. Brominated indoles derived from the Australian marine mollusk Dicathais orbita (D. orbita) are of interest for their anti-inflammatory properties. This study evaluates the binding mechanism and potentiality of several brominated indoles (tyrindoxyl sulfate, tyrindoleninone, 6-bromoisatin, and 6,6'-dibromoindirubin) against inflammatory mediators cyclooxygenases-1/2 (COX-1/2) using molecular docking, followed by molecular dynamics simulation, along with physicochemical, drug-likeness, pharmacokinetic (pk), and toxicokinetic (tk) properties. Molecular docking identified that these indole compounds are anchored, with the main amino acid residues, positioned in the binding pocket of the COX-1/2, required for selective inhibition. Moreover, the molecular dynamics simulation based on root mean square deviation (RMSD), radius of gyration (Rg), solvent accessible surface area (SASA), and root mean square fluctuation (RMSF) analyses showed that these natural brominated molecules transit rapidly to a progressive constant configuration during binding with COX-1/2 and seem to accomplish a consistent dynamic behavior by maintaining conformational stability and compactness. The results were comparable to the Food and Drug Administration (FDA)-approved selective COX inhibitor, aspirin. Furthermore, the free energy of binding for the compounds assessed by molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) confirmed the binding capacity of indoles towards COX-1/2, with suitable binding energy values except for the polar precursor tyrindoxyl sulfate (with COX-1). The physicochemical and drug-likeness analysis showed zero violations of Lipinski's rule, and the compounds are predicted to have excellent pharmacokinetic profiles. These indoles are projected to be non-mutagenic and free from hepatotoxicity, with no inhibition of human ether-a-go-go gene (hERG) I inhibitors, and the oral acute toxicity LD50 in rats is predicted to be similar or lower than aspirin. Overall, this work has identified a plausible mechanism for selective COX inhibition by natural marine indoles as potential therapeutic candidates for the mitigation of inflammation.


Assuntos
Inibidores de Ciclo-Oxigenase/farmacologia , Indóis/farmacologia , Cristalografia por Raios X , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Halogenação , Humanos , Indóis/síntese química , Indóis/química , Ligantes , Modelos Moleculares , Estrutura Molecular
8.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502040

RESUMO

Since long-term use of classic NSAIDs can cause severe side effects related mainly to the gastroduodenal tract, discovery of novel cyclooxygenase inhibitors with a safe gastric profile still remains a crucial challenge. Based on the most recent literature data and previous own studies, we decided to modify the structure of already reported 1,3,4-oxadiazole based derivatives of pyrrolo[3,4-d]pyridazinone in order to obtain effective COX inhibitors. Herein we present the synthesis, biological evaluation and molecular docking studies of 12 novel compounds with disubstituted arylpiperazine pharmacophore linked in a different way with 1,3,4-oxadiazole ring. None of the obtained molecules show cytotoxicity on NHDF and THP-1 cell lines and, therefore, all were qualified for further investigation. In vitro cyclooxygenase inhibition assay revealed almost equal activity of new derivatives towards both COX-1 and COX-2 isoenzymes. Moreover, all compounds inhibit COX-2 isoform better than Meloxicam which was used as reference. Anti-inflammatory activity was confirmed in biological assays according to which title molecules are able to reduce induced inflammation within cells. Molecular docking studies were performed to describe the binding mode of new structures to cyclooxygenase. Investigated derivatives take place in the active site of COX, very similar to Meloxicam. For some compounds, promising druglikeness was calculated using in silico predictions.


Assuntos
Inibidores de Ciclo-Oxigenase/síntese química , Oxidiazóis/síntese química , Piridazinas/química , Pirróis/química , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/toxicidade , Humanos , Simulação de Acoplamento Molecular , Oxidiazóis/farmacologia , Oxidiazóis/toxicidade , Ligação Proteica , Células THP-1
9.
Biol Pharm Bull ; 44(9): 1230-1238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471051

RESUMO

A series of salicylic acid analogues of celecoxib where the phenylsulfonamide moiety in the structure of celecoxib is replaced by salicylic acid moiety was synthesized and tested for in vitro cyclooxygenase (COX)-1 and COX-2 enzyme inhibition. Among the series, 5-substituted-2-hydroxy-benzoic acid analogues (7a-7h) generally showed better inhibitory activities on both enzymes than 4-substituted-2-hydroxy-benzoic acid analogues (12a-12h). In particular, the chloro analogue 7f which had the highest inhibitory effect (IC50 = 0.0057 µM) to COX-1 with excellent COX-1 selectivity (SI = 768) can be classified as a new potent and selective COX-1 inhibitor. The high inhibitory potency of 7f was rationalized through the docking simulation of this analogue in the active site of COX-1 enzyme.


Assuntos
Celecoxib/análogos & derivados , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Salicilatos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Celecoxib/química , Inibidores de Ciclo-Oxigenase/síntese química , Ensaios Enzimáticos , Simulação de Acoplamento Molecular , Estrutura Molecular , Salicilatos/síntese química , Relação Estrutura-Atividade
10.
Bioorg Chem ; 115: 105253, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390973

RESUMO

Responding to the great demand of developing potent NSAIDs with an enhanced safety profile and reasonable selectivity, in the present study novel 4-fluorobenzamide derivatives were synthesized and screened for their anti-inflammatory and analgesic activities using carrageenan-induced rat paw edema method and acetic acid-induced abdominal writhing in mice, respectively. All the new target compounds except the carbamothioylhydrazine series (5a-d), and the 4-fluorophenyl thiadiazolo derivative 6b showed promising anti-inflammatory activity ranged between 53.43 and 92.36% inhibition of edema (at 3 h) compared to the reference standard indomethacin (65.64%). All the newly synthesized compounds showed potent analgesic activity ranged between 71 and 100 % writhing protection compared to indomethacin (74.06%). Moreover, the most active compounds; the ester hybrids 2a,b, the thioureido quinazolinones 4b,c, and the thiadiazole congener 6a, showed promising gastric tolerability with ulcer index ranged between 0 and 6.60 compared to indomethacin (12.13). The thioureido quinazolinone derivatives 4b,c showed the most potent anti-inflammatory and analgesic activities with a remarkable gastric tolerability compared to the other derivatives. The 4-chlorophenyl derivative 4b is considered the most promising analogue showing 92.36% inhibition of edema, 100% writhing protection in analgesia testing, and a COX-2 selectivity index of 5.75 which was better than that of indomethacin and celecoxib standards (selectivity index = 0.27 and 4.55; respectively). Moreover, it showed an ulcer index equals zero with gastric acidity and mucin levels comparable to that of the control group indicating its minor effect on gastric cell physiology and its high tolerability. Molecular docking studies predicted the binding pattern of the newly synthesized compounds in COX-1 and COX-2 enzymes confirming the ability of the most active candidates to satisfy the structural features required for binding and rationalized their selectivity based on their docking binding patterns and scores. Furthermore, the newly synthesized 4-fluorobenzamide derivatives possess promising predicted pharmacokinetic properties indicated by calculating their key physicochemical parameters and absorption percentages.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Benzamidas/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Desenho de Fármacos , Edema/tratamento farmacológico , Analgésicos/síntese química , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Benzamidas/síntese química , Benzamidas/química , Carragenina , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/patologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Humanos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
11.
Bioorg Chem ; 114: 105136, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34328860

RESUMO

Pyranopyrazole and its derivatives are classified to be a pharmacologically significant active scaffold for almost all modes of biological activities. In this work, An efficient, green, and facile three-component reaction for preparing pyrano[2,3-c]pyrazole derivatives via the condensation reaction of 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, ethyl acetoacetate, and malononitrile in the presence of ZnO Nanoparticle. The products are produced with high yields and in shorter reaction times. It also is mild, safe, green, and environmentally friendly. The geometric parameters such as dipole moment, bond length, dihedral angles, total energy, heat of formation, atomic charges and energies at a highly accurate for prepared compounds were computed by Denisty Functional Theory along with the B3LYP functional. The newly synthesized compounds were screened for their anti-inflammatory and antioxidant activity. Some of the tested compounds displayed promising activities. The newly prepared compounds were found to be potent towards the antioxidant activity. Results indicated that compounds 11 and 12 exhibited significant (p ≥ 0.05) in vitro total antioxidant activity as 44.93 ± 0.15 and 39.60 ± 0.10 U/ML, respectively higher than standard ascorbic acid (29.40 ± 0.62).


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Teoria da Densidade Funcional , Inibidores de Lipoxigenase/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antioxidantes/síntese química , Antioxidantes/química , Araquidonato 5-Lipoxigenase/metabolismo , Catálise , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Humanos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/metabolismo , Piranos/síntese química , Piranos/química , Piranos/farmacologia , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
12.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203324

RESUMO

The antitumor activity of certain anti-inflammatory drugs is often attributed to an indirect effect based on the inhibition of COX enzymes. In the case of anti-inflammatory prodrugs, this property could be attributed to the parent molecules with mechanism other than COX inhibition, particularly through formulations capable of slowing down their metabolic conversion. In this work, a pilot docking study aimed at comparing the interaction of two prodrugs, nabumetone (NB) and its tricyclic analog 7-methoxy-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-one (MC), and their common active metabolite 6-methoxy-2-naphthylacetic acid (MNA) with the COX binding site, was carried out. Cytotoxicity, cytofluorimetry, and protein expression assays on prodrugs were also performed to assess their potential as antiproliferative agents that could help hypothesize an effective use as anticancer therapeutics. Encouraging results suggest that the studied compounds could act not only as precursors of the anti-inflammatory metabolite, but also as direct antiproliferative agents.


Assuntos
Anti-Inflamatórios não Esteroides , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase , Nabumetona , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Células MCF-7 , Nabumetona/síntese química , Nabumetona/química , Nabumetona/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia
13.
Adv Sci (Weinh) ; 8(16): e2100832, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34176236

RESUMO

The repertoire of natural products offers tremendous opportunities for chemical biology and drug discovery. Natural product-inspired synthetic molecules represent an ecologically and economically sustainable alternative to the direct utilization of natural products. De novo design with machine intelligence bridges the gap between the worlds of bioactive natural products and synthetic molecules. On employing the compound Marinopyrrole A from marine Streptomyces as a design template, the algorithm constructs innovative small molecules that can be synthesized in three steps, following the computationally suggested synthesis route. Computational activity prediction reveals cyclooxygenase (COX) as a putative target of both Marinopyrrole A and the de novo designs. The molecular designs are experimentally confirmed as selective COX-1 inhibitors with nanomolar potency. X-ray structure analysis reveals the binding of the most selective compound to COX-1. This molecular design approach provides a blueprint for natural product-inspired hit and lead identification for drug discovery with machine intelligence.


Assuntos
Produtos Biológicos/química , Inibidores de Ciclo-Oxigenase/síntese química , Desenho de Fármacos/métodos , Descoberta de Drogas/métodos , Pirróis/química , Inteligência Artificial , Inibidores de Ciclo-Oxigenase/química
14.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573356

RESUMO

In the present paper, we describe the biological activity of the newly designed and synthesized series N-substituted 3,4-pyrroledicarboximides 2a-2p. The compounds 2a-2p were obtained in good yields by one-pot, three-component condensation of pyrrolo[3,4-c]pyrrole scaffold (1a-c) with secondary amines and an excess of formaldehyde solution in C2H5OH. The structural properties of the compounds were characterized by 1H NMR, 13C NMR FT-IR, MS, and elemental analysis. Moreover, single crystal X-ray diffraction has been recorded for compound 2h. The colorimetric inhibitor screening assay was used to obtain their potencies to inhibit COX-1 and COX-2 enzymes. According to the results, all of the tested compounds inhibited the activity of COX-1 and COX-2. Theoretical modeling was also applied to describe the binding properties of compounds towards COX-1 and COX-2 cyclooxygenase isoform. The data were supported by QSAR study.


Assuntos
Inibidores de Ciclo-Oxigenase/farmacologia , Imidas/farmacologia , Pirróis/farmacologia , Linhagem Celular , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 1/ultraestrutura , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/ultraestrutura , Inibidores de Ciclo-Oxigenase/síntese química , Desenho de Fármacos , Ensaios Enzimáticos , Humanos , Imidas/síntese química , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirróis/síntese química , Relação Estrutura-Atividade
15.
Eur J Med Chem ; 209: 112919, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129592

RESUMO

Cardiovascular diseases (CVDs) account for over 17 million death globally each year, including arterial thrombosis. Platelets are key components in the pathogenesis of this disease and modulating their activity is an effective strategy to treat such thrombotic events. Cyclooxygenase-1 (COX-1) isoenzyme is involved in platelet activation and is the main target of non-steroidal anti-inflammatory drugs (NSAIDs) and new selective inhibitor research. Inhibitors of general formula mofezolac-spacer-mofezolac (mof-spacer-mof) and mofezolac-spacer-arachidonic acid (mof-spacer-AA) were projected to investigate the possible cross-talk between the two monomers (Eallo and Ecat) forming the COX-1 homodimer. Mofezolac was chosen as either one or two moieties of these molecules being the known most potent and selective COX-1 inhibitor and administrated to humans as Disopain™, then arachidonic acid (AA) was used to develop molecules bearing, in the same compound, in addition to the inhibitor moiety (mofezolac) also the natural COX substrate. Depending on the nature of the spacer, COX-1 and COX-2 activity was differently inhibited by mof-spacer-mof set with a preferential COX-1 inhibition. The highest COX-1 selectivity was exhibited by the compound in which the spacer was the benzidine [N,N'-(biphenyl-4,4'-di-yl)bis (2-[3,4-bis(4-methoxyphenyl)isoxazol-5-yl]acetamide) (15): COX-1 IC50 = 0.08 µM, COX-2 IC50 > 50 µM, Selectivity Index (SI) > 625]. In the case of mof-spacer-AA set, the COX inhibitory potency and also the isoform preference changed. (5Z, 8Z, 11Z, 14Z)-N-(4-{2-[3,4-Bis(4-methoxyphenyl)isoxazol-5-yl]acetamido}butyl)icosa-5,8,11,14-tetraenamide (19) and (5Z, 8Z, 11Z, 14Z)-N-(4'-{2-[3,4-bis(4-methoxyphenyl)isoxazol-5-yl]acetamido}-[1,1'-biphenyl]-4-yl)icosa-5,8,11,14-tetraenamide (21), in which the spacer is the 1,2-diaminobutane or benzidine, respectively, selectively inhibited the COX-2, whereas when the spacer is the 1,4-phenylendiamine [(5Z, 8Z, 11Z, 14Z)-N-(4-{2-[3,4-bis(4-methoxyphenyl)isoxazol-5-yl]acetamido}phenyl)icosa-5,8,11,14-tetraenamide) (20) the COX preference is COX-1 (COX-1 IC50 = 0.05 µM, COX-2 IC50 > 50 µM, with a COX-1 selectivity > 1000). Molecular modelling by using FLAP algorithm shows fundamental interactions of the novel compounds at the entry channel of COX and inside its catalytic cavity. The effect of these mof-spacer-mof and mof-spacer-AA in inhibiting in vitro free arachidonic acid-induced platelet aggregation was also determined. A positive profile of hemocompatibility in relation to their influence on the blood coagulation cascade and erythrocyte toxicity was observed. Cytotoxicity and genotoxicity safety were also found for these two novel sets of compounds.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Ácido Araquidônico/síntese química , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Isoxazóis/síntese química , Trombose/tratamento farmacológico , Algoritmos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Ácido Araquidônico/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Chlorocebus aethiops , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Eritrócitos/efeitos dos fármacos , Humanos , Isoxazóis/farmacologia , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Células Vero
16.
ChemMedChem ; 16(3): 430-447, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33029886

RESUMO

Isoxazolines are nitrogen- and oxygen-containing five-membered heterocyclic scaffolds with extensive biological activities. This framework can be readily obtained in good to excellent yields through 1,3-dipolar cycloaddition between nitrones with alkynes or allenes, aryl/alkyl halides, alkynes, and oxaziridines under mild conditions. This scaffold has been an emerging area of interest for many researchers given their wide range of bioactivities. Herein we review synthetic strategies toward isoxazolines and the role these efforts have had in enhancing the biological activity of natural products and synthetic compounds such as antitubercular agents, COX-1 inhibitors, COX-2 inhibitors (e. g., valdecoxib), nicotinic receptor modulators, and MIF inhibitors. With a focus on efforts from 2010 onward, this review provides in-depth coverage of the design and biological evaluation of isoxazoline systems and their impact on various pathologies.


Assuntos
Antituberculosos/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Isoxazóis/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Estrutura Molecular
17.
Arch Pharm (Weinheim) ; 354(4): e2000328, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33314237

RESUMO

New indomethacin analogs 4a-g, 5, 6, 8a, and 8b were synthesized to overcome the nonselectivity and ulcer liability of indomethacin. All newly synthesized compounds were more potent against cyclooxygenase 2 (COX-2; IC50 value range: 0.09-0.4 µÐœ) as compared with celecoxib (IC50 = 0.89 µÐœ). Compounds 4a, 4b, 4d, 5, and 6 showed the highest COX-2 selectivity index (SI range = 4.07-6.33) as compared with indomethacin (SI = 1.14) and celecoxib (SI = 3.52). Additionally, 4a, 4b, 4d, 5, and 7 showed good anti-inflammatory activity with edema inhibition (79.36-88.8%), relative to celecoxib (78.96%) and indomethacin (90.43%), after 5 h. Also, ulcerogenic effects and histopathological examination were assessed for the most potent analogs, 4b, 4d, 5, and 6, to determine their safety. The results can shed light on indomethacin analog 5 as a remarkable anti-inflammatory lead compound with a good safety profile (ulcer index = 10.62) close to the nonulcerogenic drug celecoxib (ulcer index = 10.53) and better than indomethacin (ulcer index = 18.50). Docking studies were performed in the COX-2 active site for the most active compounds, to test their selectivity and to confirm their mechanism of action.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antiulcerosos/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Indometacina/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antiulcerosos/síntese química , Antiulcerosos/química , Carragenina , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/patologia , Formaldeído , Humanos , Indometacina/síntese química , Indometacina/química , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Relação Estrutura-Atividade
18.
Bioorg Med Chem Lett ; 33: 127743, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316405

RESUMO

A series of caffeic acid (CA) derivatives 7a-j were synthesized via etherification and coupling action and their chemical structures were elucidated spectroscopically. Motivated by the various biological activities displayed by CA derivatives such as anti-inflammatory, antiviral, anticancer and antioxidant and also based on its extensively consumption in the human diet. In the present work, the newly synthesized compounds 7a-j were evaluated for anti-inflammatory and analgesic action and most of them exerted comparable activity to the reference compound celecoxib. Further, ulcer indexes for the most active compounds were calculated and most of them showed less ulcerogenic effect than the reference drug. Among the title series 7a-j, compounds 7f and 7g with electron withdrawing bromo and chloro group respectively, at the para position of the phenoxy ring was showed good activity compared to all other compounds. Interestingly, the COX-I/COX-II activity ratio of potent compounds 7f and7g showed an almost equal inhibitory effect on both isoenzymes. Further, molecular docking studies have been performed for the potent compounds which showed statistically significant result.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Ácidos Cafeicos/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Edema/tratamento farmacológico , Dor/tratamento farmacológico , Úlcera Gástrica/tratamento farmacológico , Ácido Acético , Analgésicos/síntese química , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Ácidos Cafeicos/síntese química , Ácidos Cafeicos/química , Carragenina , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Dor/induzido quimicamente , Ratos , Úlcera Gástrica/metabolismo , Relação Estrutura-Atividade
19.
Bioorg Chem ; 106: 104476, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33250206

RESUMO

Novel arylpiperazine-1,2-benzothiazine derivatives have been designed and synthesized as potential anti-inflammatory agents. Their structure and properties have been studied using spectroscopic techniques (1H NMR, 13C NMR, FT-IR), MS, elemental analyses, and single-crystal X-ray diffraction (SCXRD, for compound 7b). This study aimed to evaluate the inhibitory activity of new derivatives against both cyclooxygenase isoforms COX-1 and COX-2 due to the similarity of new compounds to oxicams drugs from the NSAIDs group. All new compounds were divided into two series - A and B - with a different linker between thiazine and piperazines nitrogens. Series A included the three-carbon aliphatic linker and series B - two-carbon with a carbonyl group. According to in vitro and molecular docking studies all new compounds exhibited cyclooxygenase inhibitory activity. The series of A compounds included COX-1 inhibitors only. In contrast, the B series showed inhibition of both COX-1 and COX-2, which suggested the importance of the acetoxy linker for COX-2 inhibition. Moreover, the most selective compound 7b, towards COX-2, was non-toxic for the normal human cell line (in concentration of 10 µM) comparable to reference drug meloxicam. Additionally, investigation of influence on model membranes confirmed the ability of the compound 7b to penetrate lipid bilayers which seemed to be important to the influence with membrane protein-cyclooxygenase.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Tiazinas/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Células Cultivadas , Cristalografia por Raios X , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazinas/síntese química , Tiazinas/química
20.
Eur J Med Chem ; 204: 112620, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32738413

RESUMO

Based on the significant anti-inflammatory activity of natural quinone primin (5a), series of 1,4-benzoquinones, hydroquinones, and related resorcinols were designed, synthesized, characterized and tested for their ability to inhibit the activity of cyclooxygenase (COX-1 and COX-2) and 5-lipoxygenase (5-LOX) enzymes. Structural modifications resulted in the identification of two compounds 5b (2-methoxy-6-undecyl-1,4-benzoquinone) and 6b (2-methoxy-6-undecyl-1,4-hydroquinone) as potent dual COX/5-LOX inhibitors. The IC50 values evaluated in vitro using enzymatic assay were for compound 5b IC50 = 1.07, 0.57, and 0.34 µM and for compound 6b IC50 = 1.07, 0.55, and 0.28 µM for COX-1, COX-2, and 5-LOX enzyme, respectively. In addition, compound 6d was identified as the most potent 5-LOX inhibitor (IC50 = 0.14 µM; reference inhibitor zileuton IC50 = 0.66 µM) from the tested compounds while its inhibitory potential against COX enzymes (IC50 = 2.65 and 2.71 µM for COX-1 and COX-2, respectively) was comparable with the reference inhibitor ibuprofen (IC50 = 4.50 and 2.46 µM, respectively). The most important structural modification leading to increased inhibitory activity towards both COXs and 5-LOX was the elongation of alkyl chain in position 6 from 5 to 11 carbons. Moreover, the monoacetylation in ortho position of bromo-hydroquinone 13 led to the discovery of potent (IC50 = 0.17 µM) 5-LOX inhibitor 17 (2-bromo-6-methoxy-1,4-benzoquinone) while bromination stabilized the hydroquinone form. Docking analysis revealed the interaction of compounds with Tyr355 and Arg120 in the catalytic site of COX enzymes, while the hydrophobic parts of the molecules filled the hydrophobic substrate channel leading up to Tyr385. In the allosteric catalytic site of 5-LOX, compounds bound to Tyr142 and formed aromatic interactions with Arg138. Taken together, we identified optimal alkyl chain length for dual COX/5-LOX inhibition and investigated other structural modifications influencing COX and 5-LOX inhibitory activity.


Assuntos
Benzoquinonas/química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Resorcinóis/química , Domínio Catalítico , Simulação por Computador , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Lipoxigenase/síntese química , Simulação de Acoplamento Molecular , Oxirredução , Análise Espectral/métodos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA